
High-Performance Cardiac Electrophysiology Simulation with SSI-ADI:
Second-Order Accuracy and GPU-Driven Acceleration

Guilherme M Couto1, Noemi Z Monteiro1, Marcelo Lobosco1, Bernardo M Rocha1, Joventino O
Campos1, Rodrigo W dos Santos1

1 Federal University of Juiz de Fora, Juiz de Fora, Brazil

Abstract

We present a numerical study of the Second-Order Semi-
Implicit Alternating Direction Implicit (SSI-ADI) method
applied to cardiac electrophysiology simulations. We com-
pared its accuracy, stability, and performance against the
Forward Euler (FE) and Operator Splitting ADI (OS-ADI)
methods. Results showed that SSI-ADI achieved second-
order temporal convergence with superior accuracy and
stability. Its parallel implementation with CUDA provided
a speedup of over 12x, enabling high-accuracy simula-
tions. This balance of precision and efficiency makes SSI-
ADI a compelling tool for large-scale and time-sensitive
cardiac modeling applications.

1. Introduction

Computational modeling of cardiac electrophysiology
plays a crucial role in developing new therapies, medical
devices, and clinical procedures. As simulations become
increasingly integrated into medical practice, the need for
accurate and efficient numerical methods grows. However,
the complexity of the equations that govern electrical prop-
agation in cardiac tissue poses significant computational
challenges [1, 2].

Among the most widely used models is the mon-
odomain, a nonlinear reaction-diffusion (NRD) system
that describes transmembrane potential dynamics across
cardiac tissue. Solving this equation numerically requires
careful consideration of both stability and efficiency. First-
order methods, such as the FE and the OS-ADI, based on
the Godunov splitting [3], are simple to implement but are
often limited by stability constraints or reduced accuracy.
Second-order methods, while more accurate, typically in-
volve higher costs.

In this work, we evaluated the SSI-ADI method, de-
veloped for reaction-diffusion systems [4], applied to the
monodomain model. We compared its accuracy, stabil-
ity, and performance against the FE and OS-ADI methods.
In a fine-resolution 2D experiment, the SSI-ADI method

demonstrated superior accuracy and robustness. All meth-
ods were parallelized using OpenMP and CUDA, and a
simulation was designed to replicate arrhythmogenic ac-
tivity. To the best of our knowledge, this is the first appli-
cation of the SSI-ADI method in cardiac electrophysiology
with parallel execution on GPUs.

2. Methods

2.1. Mathematical model

The electrical activity of cardiac tissue was described in
this work using the monodomain model, a widely adopted
formulation that captures the propagation of the transmem-
brane potential Vm across cardiac cells. This model com-
bines diffusive and reactive processes: the diffusive term,
given by a partial differential equation (PDE), accounts for
the spread of electrical signals, while the reactive term rep-
resents the ionic exchanges across the cell membrane, gov-
erned by nonlinear ordinary differential equations (ODEs).
The monodomain equation is expressed as:

∂Vm

∂t
= D∇2Vm − Iion(Vm,η) + Istim,

∂η

∂t
= f(Vm,η),

(1)

where D is the diffusion coefficient, Iion denotes the to-
tal ionic current, Istim is the external stimulation, and η
represents the state variables that are governed by a set of
ODEs, f , associated with the cellular model.

In this study, we considered an isotropic diffusion
regime with a constant coefficient D = 0.65×10−3 cm2/s.
To complete the formulation, initial conditions were spec-
ified for all dynamic variables, and the domain was sub-
ject to zero-flux Neumann boundary conditions, which are
mathematically expressed as n · D∇Vm = 0, where n
denotes the normal vector to the boundary. This imposes
electrical isolation of the domain periphery.

To describe the ionic current Iion, the monodomain was
coupled with the Minimal Ventricular (MV) model, a sim-
plified cellular model that captures key electrophysiolog-

Computing in Cardiology 2025; Vol 52 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.439



ical features of the action potential of human ventricular
cells using only four state variables. Its parameters were
adjusted to reproduce the morphology of the more detailed
ten Tusscher model, thus preserving biological plausibility
while significantly reducing simulation costs [5].

2.2. Second-order semi-implicit ADI

To numerically solve the NRD system derived from the
monodomain model, Equation (1), we employed the SSI-
ADI method. This scheme was specifically designed to
achieve second-order accuracy in both time and space [4],
while also ensuring high computational efficiency, a key
requirement for cardiac electrophysiology simulations.

The SSI-ADI framework split the Equation (1) into dif-
fusion and reaction components, which were handled sep-
arately. The linear diffusion term was discretized using the
Crank–Nicolson (CN) method, a well-established second-
order scheme in time [6]. However, preserving second-
order temporal accuracy for the full system also required a
consistent treatment of the nonlinear reaction term. To this
end, the second-order Runge–Kutta method (also known
as the midpoint method) was adopted, evaluating the reac-
tion term at the intermediate time tn+∆t/2. This strategy
led to the following coupled scheme:

V n+1
m − V n

m

∆t
=

D

2

(
∇2V n+1

m +∇2V n
m

)
+R(V

n+ 1
2

m ,ηn+ 1
2 ), (2)

where R(V
n+ 1

2
m ,ηn+ 1

2 ) = −Iion(V
n+ 1

2
m ,ηn+ 1

2 ) + Istim
represents the reaction term.

The intermediate values V
n+ 1

2
m and ηn+ 1

2 were not
known a priori and had to be approximated explicitly. The
potential at the midpoint was estimated through a predictor
step:

V ∗
m = V n

m +
∆t

2

(
D∇2V n

m +R(V n
m,ηn)

)
. (3)

In the MV model, the state variables are governed by
Hodgkin–Huxley-type equations, and we integrated them
using the Rush–Larsen method, which is particularly well-
suited for stiff ODEs arising in ionic models [7]. The mid-
point estimate η∗ was computed as:

η∗ = ηn
∞ − (ηn

∞ − ηn)exp

(
− ∆t

2τnη

)
, (4)

and the updated value at tn+1 was given by:

ηn+1 = η∗
∞ − (η∗

∞ − ηn)exp

(
−∆t

τ∗η

)
. (5)

To further enhance computational efficiency, the ADI
strategy was applied to decompose the two-dimensional

problem described by Equation (2) into a sequence of one-
dimensional problems at each time step. This decomposi-
tion resulted in two successive tridiagonal systems:

−ϕV
n+ 1

2
mi−1,j + (1 + 2ϕ)V

n+ 1
2

mi,j − ϕV
n+ 1

2
mi+1,j = Fn

i , (6)

−ϕV n+1
mi,j−1

+ (1 + 2ϕ)V n+1
mi,j

− ϕV n+1
mi,j+1

= Fn+ 1
2

j , (7)

where ϕ =
D∆t

2∆x2
, assuming ∆x = ∆y. The right-hand

sides (RHSs) Fn
i and Fn+ 1

2
j were given by:

Fn
i = ϕV n

mi,j−1
+ (1− 2ϕ)V n

mi,j
+ ϕV n

mi,j+1

+
∆t

2
R(V ∗

m,η∗), (8)

Fn+ 1
2

j = ϕV
n+ 1

2
mi−1,j + (1− 2ϕ)V

n+ 1
2

mi,j + ϕV
n+ 1

2
mi+1,j

+
∆t

2
R(V ∗

m,η∗). (9)

In Equation (6), the diffusion operator was applied
implicitly in the y-direction, while the RHS Fn

i , Equa-
tion (8), included an explicit treatment of diffusion in
the x-direction. Conversely, Equation (7) applied diffu-
sion implicitly in the x-direction, with its RHS Fn+ 1

2
j ,

Equation (9), incorporating diffusion explicitly in the
y-direction. This alternating implicit-explicit treatment
across directions allowed for stable time integration while
avoiding the computational cost of solving fully two-
dimensional systems.

2.3. Parallelization of the SSI-ADI method

To accelerate the numerical solution of the SSI-ADI
method, we implemented a CUDA-based parallel version
of the algorithm in C.

The parallel implementation was organized around three
main CUDA kernels. The first kernel was responsible for
computing the nonlinear reaction term R(Vm,η), using the
explicit scheme described in Equations (3) and (4). Addi-
tionally, this kernel updates the state variables according
to Equation (5). Each thread handled the complete set of
operations for a single spatial point (i, j), ensuring data
locality and minimizing global memory traffic. The com-
puted reaction term was stored for use in the subsequent
ADI diffusion stages.

The second kernel constructed the RHS of the linear sys-
tems in the ADI steps and appeared in two variants, one for
each direction. The first one computed Equation (8), per-
forming explicit diffusion in the x-direction and incorpo-
rating half of the previously computed reaction term. The

Page 2



second one solved Equation (9), applying explicit diffu-
sion in the y-direction and adding the remaining half of
the reaction term. As with the first kernel, one thread per
grid point was launched, ensuring full parallelism across
the spatial domain.

Finally, the third kernel solved batches of independent
tridiagonal linear systems that arose from the implicit dis-
cretization of the diffusion terms. They were handled us-
ing the Thomas algorithm and were implemented in two
directional variants. The first one solved Nx independent
systems of size Ny , corresponding to Equation (6). Con-
versely, the other one solved Ny systems of size Nx, as
described in Equation (7). Here, Nx and Ny represent
the number of grid points in the horizontal and vertical di-
rections, respectively. By using direction-specific kernels,
transposing data between steps was not necessary, thus re-
ducing global memory operations.

2.4. Computational experiments

We conducted two computational experiments to evalu-
ate accuracy, stability, and performance. The first focused
on temporal accuracy. A 2D rectangular domain (1 cm
× 0.01 cm) was initialized with a planar excitation along
the left edge (0.2 cm × 0.01 cm, 2 ms duration), induc-
ing a wave propagating rightward. The total simulation
time was 36 ms. To minimize spatial errors, we used a
fine spatial resolution of 1 µm and varied the time step
from 0.016 ms to 0.256 ms. Since no analytical solution
is available, a high-resolution simulation using SSI-ADI
with ∆t = 0.0001 ms served as the reference. To ensure
consistent initial conditions, a 10 ms pre-simulation was
performed with the same configuration as the reference,
and its resulting wavefront was shifted 0.7 cm left before
starting the new simulations for another 26 ms. Accuracy
was assessed via the L2-norm of the error.

The second experiment was designed to replicate ar-
rhythmogenic activity and to evaluate execution time and
parallel speedup. A square domain (6 cm × 6 cm) was
simulated with 100 µm spatial resolution and a fixed time
step of 0.01 ms for 500 ms. An S1–S2 stimulation pro-
tocol induced a spiral wave: S1 was applied at the left
boundary (0.2 cm width), and S2 was delivered at 340 ms
over a 3 cm × 3 cm region in the lower-left quadrant, both
with a duration of 2 ms. All methods (FE, OS-ADI, SSI-
ADI) were executed using both OpenMP (6 threads) and
CUDA. Performance was measured on a workstation with
an NVIDIA RTX 4070 Ti Super GPU and an Intel Core
i5-13400F CPU.

3. Results and discussions

The first set of experiments aimed to evaluate the
numerical stability and temporal accuracy of the tested

schemes. As expected, FE method failed to complete
any of the simulations, consistently diverging regardless
of the chosen time step. This outcome aligns with the
well-known limitation of explicit schemes imposed by
the Courant–Friedrichs–Lewy (CFL) condition, reinforc-
ing the method’s unsuitability for stiff problems like those
arising in cardiac electrophysiology.

In contrast, both implicit approaches demonstrated ex-
cellent stability across all tested time steps, including rela-
tively coarse values up to 0.256 ms. However, their accu-
racy levels diverged significantly. At every temporal reso-
lution, the SSI-ADI method consistently yielded lower er-
rors when compared to OS-ADI.

Figure 1 presents a log-log plot of the L2 error norm as
a function of time step for both OS-ADI (in red) and SSI-
ADI (in blue). The dashed lines correspond to linear re-
gressions obtained via least squares fitting, which allowed
estimation of the empirical convergence rate in time. The
SSI-ADI method exhibited a convergence slope of approx-
imately 2.10, matching the expected second-order behav-
ior. In contrast, the OS-ADI method showed a slope near
1.19, consistent with its first-order temporal accuracy.

An important practical implication of this difference is
the significantly larger time steps that SSI-ADI can employ
to achieve the same level of accuracy. For instance, to ob-
tain an error of the same order as that produced by OS-ADI
with a time step of 0.016 ms, SSI-ADI required only a time
step of 0.128 ms, making the simulation approximately
eight times faster. This advantage underscores the poten-
tial of SSI-ADI for efficient and accurate simulations, as
it achieves a given error threshold with substantially lower
computational effort, thereby offsetting its per-step cost.

Figure 1. Temporal convergence analysis for the OS-ADI
(red) and SSI-ADI (blue) methods. The plot shows the L2
error norm as a function of the time step size. Dashed lines
represent least-squares fits. The SSI-ADI method exhibits
a slope of 2.10, while the OS-ADI, a slope of 1.19.

To evaluate the computational performance of the nu-

Page 3



merical schemes in simulating arrhythmias, we measured
execution times for the FE, OS-ADI, and SSI-ADI meth-
ods using two parallelization strategies: OpenMP (with 6
threads) and CUDA. As in this experiment, the space and
temporal steps were close to each other in magnitude, the
CFL condition was not a problem for FE. As expected, the
FE method was the fastest due to its simplicity, followed
by the OS-ADI and SSI-ADI methods, the latter being the
most computationally intensive due to its additional steps.

Table 1 summarizes the execution times and GPU
speedups achieved by each method when transitioning
from CPU (using OpenMP) to GPU (using CUDA).
Among all schemes, SSI-ADI stood out with the high-
est acceleration, achieving a 12.48x speedup and reduc-
ing its runtime from 747 s to just 59.88 s. This impres-
sive gain is largely attributed to the method’s structure: in
the first stage, each thread handles all computations for a
single grid point, enabling full exploitation of spatial par-
allelism. That underscores not only the numerical advan-
tages of SSI-ADI but also its exceptional scalability when
deployed on GPU architectures.

These results confirmed that — by integrating CN dis-
cretization for diffusion, Runge–Kutta approximation for
reaction, and directional splitting — the SSI-ADI method
established a powerful and scalable framework. It offered
a compelling combination of accuracy, stability, and com-
putational robustness.

Table 1. Execution times (in seconds) for OpenMP (6
threads) and CUDA, and GPU speedup.

Method OpenMP CUDA GPU Speedup
FE 155.82 20.223 7.71
OS 231.32 40.317 5.74
SSI 747.00 59.88 12.48

4. Conclusion

This study highlighted the untapped potential of the SSI-
ADI method as a powerful alternative for simulating car-
diac electrophysiology. While it involves a higher per-
step computational cost, its second-order temporal conver-
gence and robust stability enable significantly larger time
steps without compromising accuracy. As a result, SSI-
ADI can achieve a given error level much faster than first-
order schemes such as OS-ADI, effectively reducing total
simulation time. When combined with GPU paralleliza-
tion, the SSI-ADI becomes even more efficient, achieving
a 12.48x speedup over its already optimized OpenMP ver-
sion. More than just a numerically elegant scheme, SSI-
ADI proves to be a practical and scalable solution for high-
fidelity cardiac simulations. These results establish it as a

compelling tool for researchers seeking both precision and
performance in the modeling of complex heart dynamics.

Future work involves extending SSI-ADI to anisotropic
conductivity, realistic anatomies, and large-scale 3D simu-
lations. In this context, adapting the scheme to additional
directional sweeps might be guided by the Douglas–Gunn
[8] framework. Further analysis will also address hetero-
geneous conditions and explore adaptive strategies for im-
proved efficiency, reinforcing SSI-ADI as a versatile tool
in computational cardiology.

Acknowledgments

The authors acknowledge support from the Well-
come Trust (214290/Z/18/Z), EPSRC via the Comp-
BioMedX project (EP/X019446/1), CompBioMed2 (GA
675451, 823712), FAPEMIG (PCE-00048-25; APQ-
02752-24; APQ-02445-24; APQ-02513-22), FINEP (SOS
Equipamentos AV020062/22), SINAPAD Santos-Dumont,
CAPES, EBSERH, and UFJF.

References

[1] Niederer SA, Lumens J, Trayanova NA. Computational
models in cardiology. Nature Reviews Cardiology 2019;
16(2):100–111.

[2] Niederer SA, Sacks MS, Girolami M, Willcox K. Scaling
digital twins from the artisanal to the industrial. Nature Com-
putational Science 2021;1(5):313–320.

[3] Couto GM, Monteiro NZ, dos Santos RW. Accelerating
simulations of cardiac arrhythmias through robust numerical
techniques and parallel computing. In Simpósio Brasileiro de
Computação Aplicada à Saúde (SBCAS). SBC, 2023; 72–77.

[4] Monteiro NZ, Pereira RR, Rocha BM, dos Santos RW, Ma-
zorche SR, Loula AFD. A novel second-order adi scheme
for solving epidemic models with cross-diffusion. Journal of
Computational Science 2024;81:102341.

[5] Bueno-Orovio A, Cherry EM, Fenton FH. Minimal model
for human ventricular action potentials in tissue. Journal of
Theoretical Biology 2008;253(3):544–560.

[6] Strikwerda JC. Finite difference schemes and partial differ-
ential equations. SIAM, 2004.

[7] Gomes JM, Oliveira RS, Lobosco M, dos Santos RW.
Adaptive-step methods for markov-based membrane models.
Communications in Nonlinear Science and Numerical Sim-
ulation 2020;85:105249.

[8] Douglas Jr J, Gunn JE. A general formulation of alternat-
ing direction methods: Part i. parabolic and hyperbolic prob-
lems. Numerische Mathematik 1964;6(1):428–453.

Address for correspondence:

Guilherme Martins Couto
Programa de Pós-Graduação em Modelagem Computacional
(PPGMC-UFJF) - Juiz de Fora - MG, Brasil, 36036-330
guilherme.couto@estudante.ufjf.br

Page 4


